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Abstract.  We observe that no matter how meticulously constructed, networks are often partially 
observed and incomplete.  This incompleteness can lead to inaccurate findings (e.g., in terms of 
detecting community structure).  We introduce the Active Edge Probing problem.  Suppose that one is 
given a sample of a larger network and a budget to learn additional neighbors of nodes within the 
sample, with the goal of enriching the incomplete network.  Which nodes should be further explored?  
We present ε-WGX, a graph-based multi-armed bandit algorithm for identifying which nodes in a 
sample should be probed.  We compare ε-WGX to several baseline algorithms on four datasets using 
samples generated by four sampling methods, and find that although the best baseline strategy (such 
as probing high degree nodes) varies by network and application, ε-WGX consistently outperforms or 
nearly matches the performance of the best baseline strategy.   

Introduction.  Most network analyses are conducted on existing incomplete samples of much larger complete 
networks (e.g., networks collected over a short time period or extracted by a crawling or sampling algorithm).  
For example, a researcher studying a Twitter retweet network might initially obtain a sample from an online data 
repository.  This data is incomplete.  More complete data would lead to more accurate analyses, but data 
acquisition is costly.  Given a query budget for identifying additional edges, which nodes should be further 
explored (i.e., probed) so that the resulting neighborhood information produces a better representation of the fully 
observed network?  We call this problem the Active Edge Probing problem.  Real applications of this problem 
abound.  Consider a micro-loan company, which gets access to an applicant's Facebook account, and uses this 
information to make credit decisions about the applicant.  The company knows who the applicant's friends are but 
does not know if they are friends with each other (which can be helpful for evaluating credit scores).  In this case, 
the company wishes to learn about edges that produce triangles between individuals in the sample.   

To solve the Active Edge Probing problem, we present ε-WGX (short for epsilon Weighted Graph 
eXploration), a graph-based multi-armed bandit strategy for identifying which nodes to probe. The key strength of 
ε-WGX is that it does not require any (1) background information about the structure of the sample, (2) knowledge 
of how the sample was created, and (3) details about the underlying network G.  Compared to baseline probing 
strategies (such as probing high or low degree nodes), across separate experiments including 4 common sampling 
methods and 2 reward functions, averaged over 4 real network datasets, ε-WGX is the best or second best probing 
strategy.  For example, for the task of maximizing the number of nodes in the sample, on samples generated by a 
BFS crawl, ε-WGX outperforms random probing by 20%.  Moreover, ε-WGX requires no background information 
and so can be used if one is unsure which baseline is best.  Figure 1 depicts the performance of ε-WGX vs. three 
baseline strategies on a random walk crawl of a student Facebook network, with the goal of observing as many 
new nodes as possible.  ε-WGX performs roughly the same as the best baseline strategy without needing any of 
the aforementioned background information. 

Problem Statement.  We assume that a network Gsamp is given, where Gsamp is a (smaller) sample of a larger 
network G.  We have no further knowledge about G, but can conduct probes on Gsamp to obtain more information 
and enrich its structure.  Although new nodes may be added to the sample as we conduct probes, we assume that 
only nodes that were present in the sample from the beginning can be selected for probing.  When a node u is 
probed, we observe one neighbor of u selected uniformly at random from the set Su, where Su contains all 
neighbors of u from G that we have not already observed.  We are also given a probing budget b, where each unit 
of budget corresponds to one probe (e.g., running one traceroute).  We assume that there is a reward function that 
guides the selection of probes.  For instance, a reward function can be to add as many new nodes as possible to 
the sample, or close as many triangles as possible in the sample.  The problem then is to select which nodes in 
Gsamp to probe. 



 

Figure 1: Performance of ε-WGX on a Facebook graduate student friendship network (described later).  Twenty 
trials were performed on the same BFS sample.  The x-axis represents the number of probes conducted.  This 
value ranges from 0 (no probes conducted) to approximately 600 (every edge that could be learned has been 
seen).  The y-axis represents the number of nodes present in the sample after conducting some number of probes.  
A good strategy will add many new nodes to the network after a small number of probes.  The shading represents 
one standard deviation.  ε-WGX performs as well as the best baseline strategy without assuming background 
knowledge such as the underlying structure of the fully observed network. 

Background.  The multi-armed bandit problem is motivated by a gambler attempting to choose which slot 
machine (a.k.a. ‘bandit’) to play from among a set of slot machines.  Each machine gives a reward drawn from a 
distribution specific to that machine, and the goal of the gambler is to maximize this reward.  A hallmark of 
solutions to the multi-armed bandit problem is the trade-off between exploration (i.e., selecting a random machine 
to play), and exploitation (i.e., playing a machine that has been known to perform well in the past).   

Algorithms for the multi-armed bandit problem abound.1  Two popular methods are the ε-greedy approach 
and the UCB (Upper Confidence Bound) algorithm.  In the ε-greedy approach, one explores with probability ε, 
and exploits with probability 1–ε  (i.e., selects the arm with the highest average reward so far).2  The UCB 
algorithm begins by initially selecting each arm once, and then calculating an upper confidence bound on the 
expected reward for each arm.3  In each step, the arm with the greatest upper confidence bound is chosen.  If an 
arm has been selected a small number of times, one cannot calculate a tight bound, and so the upper confidence 
bound is higher than it would be if the arm had been selected many times.  All else being equal, there is thus a 
preference for arms that have been chosen fewer times.   

Proposed Method: We view the Active Edge Probing problem as a version of the general multi-armed bandit 
problem, where one may probe any of the nodes in the sample network, and depending on the selection, obtain 
information of varying value for the specified reward function.  Because successful probes may exhibit significant 
structural variance depending on the application, the network, and so on, bandit algorithms are suitable here. 

We present ε-WGX, a multi-armed bandit approach for the Active Edge Probing problem.  When used for the 
active graph probing problem, ε-WGX has the following strengths.  (1) It can be used without background 
knowledge of the network structure or reward function.  In other words, one need not know what type of node 
(e.g., high degree) is useful.  (2) It can adapt to the network and reward function.  If probing some node is 
unsuccessful, it is unlikely to probe that node further.  (3) It is reliable.  We will see that the best baseline probing 
strategy varies substantially by sampling method, reward function, and network, but regardless of which baseline 
strategy happens to be the best for a given sample and reward function, ε-WGX typically outperforms or matches 
the performance of the best baseline strategy. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  See https://sites.google.com/site/banditstutorial/ for a nice tutorial on bandits (given at ICML 2011).	  
2 C.J.C.H. Watkins.  “Learning from Delayed Rewards.”  Ph.D. Dissertation, Kings’ College, 1989. 
3	  P.	  Auer,	  N.	  Cesa-‐Bianchi,	  and	  P.	  Fischer.	  	  “Finite-‐time	  analysis	  of	  the	  multi-‐armed	  bandit	  problem.”	  	  
Machine	  Learning,	  47(2-‐3):235-‐256,	  2002.	  



Unlike other multi-armed bandit algorithms, ε-WGX takes advantage of the graph structure inherent in the 
problem.  We make the following key observation: When we probe a node and obtain an edge, we have gained 
information not just about that node, but also about the observed neighbor.  In a typical multi-armed bandit 
problem setting, such as advertising, when one selects an arm, one obtains reward data about only that arm.  Some 
methods have been developed for cases in which arms have linked rewards (e.g., if a user frequently clicks on an 
ad about boats, we might infer a higher reward for other ads about boats). However, we are not aware of 
algorithms that use this type of graph structure, in which a reward for one arm directly translates into a reward for 
another arm, but the rewards of those two arms are linked only once, when the corresponding edge is observed.   

Reward Function: ε-WGX requires that the user specify a reward function, which is used to evaluate each probe.  
In the present work, we consider three reward functions.  The first one maximizes the number of nodes in the 
sample.  If a probe results in an edge leading outside of the sample, the reward value is 1.  Otherwise, the reward 
value is 0.  The second reward function aims to close triangles within the sample.  If a probe results in an edge 
between nodes that are two steps away in Gsamp, then the reward is the number of triangles created by the addition 
of that edge.  Otherwise, the reward is 0.  The third reward function aims to connect nodes in the sample.  If a 
probe results in an edge between nodes that are both within Gsamp, then the reward is 1.  Otherwise, it is 0.   

Observed Rewards: For each node u in Gsamp, ε-WGX maintains a vector Ru, containing a list of rewards 
corresponding to the probes conducted on that node.  Note that the mean of this vector is an unbiased estimate of 
the true mean reward for node u, because each probe returns a uniformly random edge adjacent to u.  Thus, the 
mean of Ru is an unbiased estimator of the true mean reward of node u. 

Additionally, we maintain a vector R’u, corresponding to the rewards observed when we probed some other 
node v and obtained edge (v, u).  This vector represents the key difference between ε-WGX and existing multi-
armed bandit algorithms.  When ε-WGX probes a node, it can update not only the set of rewards corresponding to 
that node, but also the set of rewards corresponding to the observed neighbor.   

Unlike Ru, the mean of R’u is not an unbiased estimator of the true mean reward of u.  To see this, consider the 
first reward function described above (in which we receive a score of 1 if the observed edge connects to a node 
outside of the original sample, and a score of 0 otherwise).  Because we only probe nodes that were present in 
Gsamp from the beginning (and thus only maintain reward vectors for these nodes), the R’u vector can only contain 
0s!   

Node Selection: ε-WGX requires an exploration parameter ε between 0 and 1. In each step, with probability 1–ε, 
ε-WGX selects the highest scoring node, and with probability ε, it selects a random node using the reward vectors 
in accordance with the following rules: 

1. If the reward function is such that R’u can contain both 0s and 1s,4 then we assign each node u a 
weight equal to the mean of the values in Ru and R’u, plus a small constant to allow nodes with a mean 
of 0 to have positive weight (e.g., we use 0.1).  For nodes u such that both Ru and R’u are empty, we 
assign a weight equal to the average of the weights with non-empty reward vectors.  In other words, if 
we have no information about a node, we treat it as equal to the average node for which we do have 
information.  We then select a node with probability proportional to its weight.  This node is then 
probed.   

2. If the reward function is such that R’u can have only 0s or only 1s,5 then we follow the same procedure 
as above, except that we generate the weights by only looking at Ru, rather than both Ru and R’u.  If we 
select a node that has previously been probed, then we probe that node.  Otherwise, we reconsider the 
set S of all nodes that have not yet been probed.  From S, we select the node with the ‘best’ R’u vector.  
That is, we select the node u with the R’u vector with the most 1s or the fewest 0s (recall that in this 
case, R’u contains only 0s or only 1s).  In other words, the biased R’u vector is used as a tiebreaker for 
nodes lacking unbiased information. The selected node is then probed. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 The triadic closure reward function satisfies this case. 
5 The reward functions incentivizing outgoing edges or internal edges satisfy this case. 



After probing a node u, ε-WGX updates the reward vector Ru with the observed reward from that probe. If the 
observed edge connected u to another node v within the sample, then we update R’v: if the observed reward was 0, 
then we add a 0 to R’v.  Otherwise, we add a 1 to R’v.  If u has no further neighbors to be learned, ε-WGX removes 
it from future consideration.  

Empirically, we found a value of ε = 0.3 to work well or the trade-off between exploration and exploitation.  
A formal (i.e., model selection) method for picking ε is part of our future work. 

Data and Experimental Setup.  We consider four networks: FB-Grad and FB-Ugrad, which are portions of the 
Facebook social network corresponding to graduate and undergraduate students at Rice University;6 FB-SocCir, 
which consists of social circles in Facebook;7 and Amazon, which is a product co-purchasing network.8  For 
validation purposes, we assume these networks are fully observed and produce samples using BFS crawls, 
random edge sampling, and random walks with and without jump.  Our samples contain 10% of the total number 
of edges from the original network. 

 We compare ε-WGX to three simple baseline strategies: probing high degree nodes in order (HighDeg), 
probing low degree nodes in order (LowDeg), and probing nodes in a random order (Random).  We also compare 
ε-WGX against the ε-greedy and UCB multi-armed bandit strategies.   

Experimental Results.  First, to motivate the need for a multi-armed bandit strategy over a simpler baseline 
strategy, we demonstrate that the best baseline strategy varies substantially depending on the particular network, 
sample type, and the reward function being considered.  Thus, one cannot simply select a simple strategy that was 
successful in the past.  Table 1 lists the baseline strategies that were best for various networks and sampling 
combinations, when the reward was to bring in as many new nodes as possible to the sample.  Similar results hold 
for other reward functions.  There is little consistency within rows or columns.  For example, HighDeg is 
successful in one case, but LowDeg is successful for a different case. 

Sample Type FB-Grad Network FB-Ugrad Network FB-SocCir Network Amazon Network 
BFS LowDeg LowDeg Varies LowDeg 

RandEdge LowDeg LowDeg HighDeg HighDeg 
RW Varies Varies Varies HighDeg 
RWJ Varies Varies HighDeg HighDeg 

Table 1: The most successful baseline strategy for various networks and sampling methods, with the reward of 
maximizing the number of nodes brought into the sample.  "Varies" indicates that for samples of the same type, 
different baseline strategies were most successful.  There is little consistency in terms of which strategy is the 
best.   

 Figure 2 depicts the performance of ε-WGX, the baseline strategies, and the other bandit-based strategies over 
all networks and sampling methods, for all 3 reward functions, presented as fraction improvement over random 
probing.   

 When the reward is to maximize the number of nodes in the sampled incomplete network, ε-WGX is the best 
strategy for random edge and random walk samples.  On BFS samples, the LowDeg strategy is the best, but the 
three bandit strategies all perform substantially better than random.  When the reward is to close triangles in the 
sample, ε-WGX has the best performance for random walks with jumps, and is a close second on the other three 
sampling methods.  The other bandit-based strategies also do well.  For the goal of adding edges within the 
sample, ε-WGX is the clear winner in all cases.   

 We reach two important conclusions: First, the bandit-based strategies (ε-WGX, ε-greedy, and UCB) perform 
much better than random probing.  Second, in almost every case, ε-WGX exceeds or matches the performance of 
the best baseline strategy, regardless of what that strategy might be.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Obtained from Alan Mislove. 
7 https://snap.stanford.edu/data/egonets-Facebook.html 
8 https://snap.stanford.edu/data/#amazon 



 

Figure 2: Performance of ε-WGX as compared to the HighDeg, LowDeg, ε-Greedy, and UCB baseline probing 
strategies as measured by the fraction improvement over random probing, for maximizing the number of nodes in 
the sample (top left), closing triangles in the sample (top right), and connecting nodes in the sample (bottom).  
Results are averaged over all budgets over all networks.  Note that the three bandit strategies (ε-WGX, ε-Greedy, 
and UCB) tend to perform well. That is, they often match or exceed the performance of the best baseline strategy, 
regardless of what that strategy happens to be.  ε-WGX in particular performs well.   

Conclusions.  We presented the Active Edge Probing problem, in which one is given an incomplete sample of a 
larger network, and is allowed to conduct a fixed number of probes to enrich the network’s structure.  This 
problem is important because the phenomena generating the networked data are often partially observed.  We 
presented a multi-armed bandit solution, called ε-WGX, as a solution to this problem.  “Good” probes can vary 
depending on the characteristics of the underlying system that generated the data, how the sample was collected, 
and the reward function.  ε-WGX does not make a priori assumptions about these.  As our experiments 
demonstrate, ε-WGX matches or exceeds the performance of the best baseline strategy across several networks, 
sampling methods, and reward functions. 
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